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Mixing of wavefunctions in rectangular microwave billiards
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Abstract. A set-up is described allowing the automatic registration of wavefunctions of quasi-two-
dimensional microwave billiards of arbitrary shape. Tests of the apparatus with rectangular shaped billiards
showed that a precision of some percent in the wavefunction amplitudes can be obtained, as far as isolated
resonances are considered. For the case of overlapping resonances, however, the measurement yields wave-
functions which are close to a symmetric and an antisymmetric linear combination of the original rectangle
eigenfunctions. The cause for this at first sight surprising result is discussed.

PACS. 03.65.Ge Solutions of wave equations: bound states – 41.20.-q Applied classical electromagnetism

1 Introduction

Ten years after the first experimental determination of
the spectrum of a chaotic microwave billiard [1], ana-
logue techniques have become a standard tool to study
wave chaos in different types of chaotic resonators (see
Chap. 2 of Ref. [2] for a review). In flat microwave res-
onators, in particular, there is a one-to-one correspon-
dence between the Helmholtz equation and the stationary
Schrödinger equation, including the boundary conditions.
This allows an experimental approach to the study of
questions related to quantum chaos. While most of the
studies concentrated on the spectra of chaotic billiards
and their interpretation in terms of random matrix the-
ory or periodic orbit theory, there is an increasing num-
ber of publications aiming on the study of wavefunctions
as well. Questions of interest were (i) the interpretation
of wavefunctions in terms of classical trajectories, includ-
ing the scarring phenomenon [3,4], (ii) an experimental
realization of Berry’s phase in triangular billiards [5], (iii)
a demonstration of the fact that “you cannot hear the
shape of a drum” [6], (iv) amplitude distribution functions
in billiards with [7] and without [8] time-reversal symme-
try, (v) chaos-assisted tunneling in annular billiards [9],
and (vi) the localization - delocalization transition in dis-
ordered systems [7,10]. The localization of wavefunctions
has been studied in one-dimensional disordered systems as
well [11,12]. In one experiment field distributions in three-
dimensional microwave resonators were studied [13]. The
latter example differs from the previous ones in so far, as
in three-dimensional electromagnetic systems the corre-
spondence to the Schrödinger equation no longer holds.
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In view of this increasing interest in wavefunctions in
chaotic billiards and disordered systems we felt the need
to automate the registration of wavefunctions. One of the
topics of this paper is to describe the apparatus devel-
oped by us for this purpose. We shall concentrate on a test
of the set-up with a rectangular billiard. The apparatus
allows the registration of up to about 100 wavefunctions
with a precision in the percent region. Problems arise only
for the case of overlapping resonances. Here the measure-
ment yield wavefunctions being close to a symmetric and
an antisymmetric linear combination of the original wave-
functions. The interpretation of this result is the second
topic of this paper.

Systems studied up to now were one Robnik billiard,
also known as Pascal’s limaçon [14], rough billiards [15],
ray-splitting billiards, rectangular billiards with randomly
distributed scatterers [10], and a system with topologically
induced vortices [16]. As examples see the wavefunctions
in Figure 1.

2 Experimental set-up

Figure 2 shows a sketch of the apparatus allowing an au-
tomatic registration of microwave billiard wavefunctions.
The billiard consists of two parts made of brass: The up-
per part is a plate supporting an antenna in the centre.
The antenna can be alternatively replaced by a metal-
lic or dielectric cylinder allowing perturbing bead or level
dynamics measurements as well [17]. The position of the
top plate can be moved computer-controlled in x and y
position in steps of 0.1 mm. The absolute precision of
the positioning is, however, only of the order of 1 mm.
The bottom part of the billiard can be moved up and
down with help of a step motor. During the positioning
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Fig. 1. Wavefunctions measured with the set-up described in
Section 2. From top left to bottom right: Robnik billiard for
λ = 0.15, rough billiard, ray-splitting billiard with a quarter
circle teflon inset with n = 1.44, and disordered billiard with
20 circular metallic scatterers. The wavefunction amplitudes
were converted into a grey scale with black corresponding to
positive and white corresponding to negative signs. For more
details see the references given in the text.

of the top plate the bottom part is lowered, during the
measurement it is pressed towards the top plate. The
bottom part of the billiard can easily be changed allow-
ing the study of arbitrary shapes with a maximum size
of 360×260 mm2. The bottom part of the billiard may
support a second antenna to allow transmission measure-
ments as well. Each antenna consists of a small copper
wire of diameter 0.3 mm attached to a standard SMA
chassis connector and introduced through a small hole of
diameter 1 mm into the resonator.

The number of resonances accessible to a mapping of
wavefunctions is limited by the resonator quality given by
Q = ν/∆ν, where ν is a given resonance frequency and ∆ν
its width. Figure 3 shows the experimental Q values in the
frequency range 1 to 12 GHz. One observes an increase of
Q with frequency up to about 5 GHz and a saturation at
a Q value of about 2 000 for higher frequencies. Theoreti-
cally the Q value is given by

Q = η
V

δ S
(1)

where V , S are volume and surface of the resonator, and
η is a geometrical factor of the order of one [18]. δ is the
skin depth and is given in SI units as

δ =
1

√
πµ0νσ

(2)

where µ0 is the vacuum permeability, and σ is the con-
ductance of the wall material. From equations (1) and (2)
one would expect a skin depth of 2 µm and a Q value of
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Fig. 2. Sketch of the apparatus. The height of the table is
75 cm, width and depth are 115 cm and 86 cm, respectively.

Fig. 3. Frequency dependence of the quality factor Q of the
studied rectangular billiard. The different symbols refer to dif-
ferent antenna positions. For better visualization we only plot-
ted every fifth resonance.

about 40 000 for ν = 5 GHz, which is more than an order
of magnitude larger as the experimentally observed value.
The expected increase of Q with

√
ν, too, is not found in

the experiment. This shows that the quality is not limited
by the skin depth but by small gaps between the bottom
and the top part of the resonator, which cannot always be
avoided, and which differ slightly for different positions.
This only moderate Q value is the prize to be paid for the
high flexibility of the apparatus. This limits the mapping
of wave functions to about the 100 lowest eigenvalues. For
the same reason a reliable determination of line widths is
not possible with the set-up.

Usually the wavefunctions are registered with a reso-
lution of 5 or 10 mm, corresponding to a total of about
2 000 spectra, each of it with 10 000 to 40 000 data points.
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The frequencies were typically in the range 1 to 6 GHz.
With the available Wiltron 360B vector network analyzer
the time needed for a complete registration of about 100
wavefunctions amounted to about two weeks. With net-
work analyzers presently available at the market this time
can be reduced considerably.

3 Isolated resonances

The apparatus was tested with help of a rectangular bil-
liard with side lengths a = 340 mm, b = 240 mm, and
a height of h = 8 mm. A fixed antenna at the position
x = 80 mm, y = 20 mm (measured from the centre of the
rectangle) allowed the registration of transmission spec-
tra as well. Thus all components S11, S12, S21, S22 of the
scattering matrix could be determined by the vector net-
work analyzer. Scattering theory yields a relation between
the scattering matrix S and the Green function G of the
billiard [19],

S =
1− ıW †GW
1 + ıW †GW

, (3)

where the matrix W contains the coupling amplitudes
wnj of antenna j to eigenstate n. For the case of non-
overlapping resonances equation (3) reduces to

Sij = δij − 2ıγ
∑
n

ψn(ri)ψn(rj)
k2 − k2

n −∆n + ıΓn
(4)

with shift and width of the resonances given by

∆n = =(γ)
∑
j

|ψn(rj)|2 and Γn = <(γ)
∑
j

|ψn(rj)|2 .

(5)
Here ψn(rj) is the value of the wavefunction at the po-
sition of antenna j. γ is a complex coupling constant de-
pending on the antenna geometry. In equation (4) it is
assumed that the antennas do not change the wavefunc-
tion ψn. This is justified in the limit, where the antenna
radius is small compared to the wavelength and the eigen-
states are not overlapping. See chapter 6 of reference [2]
for a more detailed discussion of this point. For the case
where two eigenstates are nearly degenerate, a more care-
ful procedure is necessary as will be discussed in Section 4.
From equation (4) it is evident that reflection spectra im-
mediately yield |ψn(rj)|2 at the position of antenna j [4],
whereas for the determination of the sign an additional
transmission measurement is needed [19]. As an example
Figure 4 shows 1−|S11| in the range 2 to 2.3 GHz while the
antenna was moved along the line x = −50 mm through
the billiard. The maxima and the node lines of the wave-
functions are clearly discernible.

Close to an isolated resonance equation (4) reduces for
the reflection measurement to

1− S11 =
b

k2 − c (6)

where b = 2ıγ |ψn(r1)|2 and c = k2
n + ∆n − ıΓn are com-

plex parameters. A fit with function (6) thus yields po-
sition, width and complex height of the resonances. One

Fig. 4. Part of the spectra of a rectangular billiard (a =
340 mm, b = 240 mm). For a better visualization 1 − |S11| is
plotted, where S11 is the reflection amplitude at the movable
antenna. The spectra were taken as a function of the y position
of the antenna, with the x position fixed at x = −50 mm.

finally gets the quantity γ |ψn(r1)|2 as a function of posi-
tion. Subsequently the constant γ is fixed by the normal-
ization

∫
|ψn(r)|2 dA = 1.

The sign of the wavefunctions is obtained from an ad-
ditional transmission measurement. Just at the resonance
position one obtains from equation (4)

S21(r2) = −2γ
ψn(r2)ψn(r1)

Γn
(7)

with a complex prefactor. The phase of S21(r2) jumps
with π whenever the sign of ψn(r1) is changing and so
can be used for detecting the sign of the wavefunctions.
Figure 5 shows two such obtained wavefunctions for eigen-
frequencies at 2.082 and 2.177 GHz, respectively (the two
left resonances in Fig. 4). The left column shows the two
wavefunctions in a grey scale where black corresponds to
positive and white to negative signs. The middle column
shows the phase of the transmission obtained from a mea-
surement of S21 along the black lines shown in the left
panel. For comparison the right column shows the calcu-
lated wavefunctions. The quality of the agreement can be
judged from Figure 6, where calculated and experimen-
tal wavefunction amplitudes are plotted along a cut at
y = −30 mm, for the same two wavefunctions as above.
An overall agreement on a some percent level is found.
A comparable good agreement between experiment and
numerics was observed for the Robnik billiard [14].

4 Degenerate resonances

Due to the presence of the measuring antenna the res-
onances are shifted and broadened as is evident from
equation (4). As a consequence the non-overlapping res-
onance approximation becomes obsolete in the moment
where shifts and widths induced by the antennas and ad-
ditional broadings due to the wall absorption are of the
same order as the distance between the unperturbed res-
onances.

To see what happens we studied three pairs of
close-lying resonances in more detail with unperturbed
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Fig. 5. Wavefunctions of the rectangle at eigenfrequencies 2.082 (top) and 2.177 (bottom) GHz. The left column shows the ex-
perimental amplitudes in a grey scale, the right column shows the theoretical expectation with the same resolution. In the
middle column the phase of the transmission is plotted with one antenna moving along the black line in the left panel. The
second antenna was fixed at the coordinates x = 80 mm, y = 20 mm (white dot in the left column, not in scale).

Fig. 6. Experimental (black) and theoretical (grey) wavefunction amplitudes for the same eigenfrequencies as in Figure 5, taken
along the line y = −30 mm.

frequencies of 2.290/2.293 GHz (the right-most res-
onance structure in Fig. 4), 2.533/2.536 GHz, and
3.241/3.244 GHz. Fitting a superposition of two
Lorentzians to the resonance lines, and associating the
amplitude of the low-lying resonance with one wavefunc-
tion, and that of the high-lying resonance with the other
one, the amplitude patterns shown in the left column of
Figure 7 are obtained. In the right column the correspond-
ing wavefunctions of the unperturbed rectangle are shown.

The measurement did not yield the original wavefunctions,
but patterns which are close to the symmetric and anti-
symmetric linear combinations.

Why are these findings surprising? Extending the cal-
culation of the scattering matrix to the case of two overlap-
ping resonances, it is easy to show that a data analysis as
described above should always yield a linear combination

ψ1 = ψ0
1 cosφ+ ψ0

2 sinφ
ψ2 = −ψ0

1 sinφ+ ψ0
2 cosφ (8)
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Fig. 7. Wavefunctions for three pairs of nearly degenerate resonances at the frequencies 2.290/2.293 GHz (top), 2.533/2.536
GHz (middle), 3.241/3.244 GHz (bottom). The left column shows the experimental results, in the right column the corresponding
unperturbed eigenstates are shown. The middle column is the result of a simulation taking into account the influence of the
fixed antenna, indicated by a white dot (not in scale).
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Fig. 8. Calculated wavefunctions for the bottom pair of resonances in Figure 7. Both the fixed and the movable antenna are
taken into account.

of the original wavefunctions ψ0
1, ψ0

2. Thus fact of the
mixing by itself is not astonishing. This explanation has,
however, the draw-back that the mixing angle φ, too, is a
function of the position of the moving antenna. In partic-
ular, there should be no mixing at all, if the antenna sits
just on a node line of either resonance.

We therefore have to look for an additional mechanism
locking the mixing angle. To get wavefunctions different
from the original one, the separability of the x and y coor-
dinates must be destroyed. There are three possible expla-
nations, which shall be discussed now. We shall see that
we can rule out all of them but one:

a) Wall absorption
The finite wall conductance causes a penetration of the
electromagnetic wave into the walls by about 1 µm,
as we have seen. It can be shown, that mixing angles
due to the wall absorption are of the order of (δ/λ)3,
where λ is the wavelength [20]. This is by far too small
to explain the observed mixing. Even if we take into
account that the observed Q values are by one order
of magnitude smaller than theoretically expected, and
express the reduced quality in terms of an effective skin
depth, we end up with a value of about 3× 10−5 mm
for δ, still too small to explain the mixing.

b) Imperfections in the billiard fabrication
The billiards are manufactured with a precision of
about 0.1 mm. To estimate the influence of the imper-
fections, we performed calculations, among others for
a rectangle with an artificial surface roughness with an
amplitude of 0.1 mm. The obtained mixtures were only
in the percent region. Therefore mechanical imperfec-
tions, too, cannot account for the observed mixing.

c) Fixed antenna
It was stated above that for isolated resonances the
influence of the antennas on the wavefunctions is
negligible. This is no longer true for nearly degener-
ate resonances, and we shall see in a moment that the
modification of the boundary conditions by the pres-
ence of the second fixed antenna is the very cause for
the observed mixture of wavefunctions.

To understand the experimental findings, we simulated
the cavity in the presence of antennas with a finite element
method. The antennas were modeled by using outgoing
wave boundary conditions,

∇NE − ıkE = 0 , (9)

on the surface of the antennas. This implies ideal match-
ing of the transmission line to the network analyzer. A
more thorough treatment would take into account possible
mismatches by correspondingly modified boundary condi-
tions. This would complicate the calculations considerably
and was not done, since a quantitative comparison with
the experiment was not possible anyway for reasons to be
discussed now.

In a first step, we calculated the resonances taking
only the fixed antenna into account. The found mixing
angle was very sensitive to the eigenfrequency spacing of
the pairs. To get a large mixing of all the three pairs, a
small adjustment of the size of the cavity was necessary.
In the calculation we changed a by −0.2 mm and b by
+0.15 mm, thus reducing the side ratio a/b by only 0.002,
which is clearly within the production tolerance. By this
the frequency spacing could be reduced for all three pairs
simultaneously from 3 MHz to below 1 MHz.

The middle column of Figure 7 shows the such ob-
tained wavefunction amplitudes. The overall agreement
with the experimental data shown in the left column
demonstrates that the fixed antenna alone is sufficient to
reproduce the necessary mixing of the wavefunctions.

The question remains whether the agreement between
simulation and experiment survives, if the moving antenna
is considered as well. Since each position of the moving an-
tenna corresponds to a new situation, altogether 759 dif-
ferent calculations had to be performed to obtain a single
wavefunction. Figure 8 shows the results of the simulation
for one pair of wavefunctions. The agreement between the
simulation and the measurement is still good though the
moving antenna has led to some modifications compared
to the corresponding figures shown in Figure 7. The sec-
ond antenna causes some extra mixing, but on average
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the mixing remains around the value given by the fixed
antenna. Similar results have been obtained for the two
other pairs of wavefunctions.

As a résumé of this section it can be stated that the
coupling of the cavity to the antennas noticeably disturbs
the system, which leads to a mixing of the wavefunc-
tions, if the states are almost degenerate. The mixing angle
changes with the position of the moving antenna, but the
presence of a fixed antenna leads to a locking of the mixing
angle. Therefore the angle varies about an average given
by the fixed antenna, but altogether the mixing remains
fairly stable.
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